Fall Semester: Unit 1-3 (18 weeks) Spring Semester: Unit 4-6 (18 weeks) | | raii Semester. Unit 1-3 (16 weeks) | | | Spring Semester. Offit 4-0 (To weeks) | | | | |------------|---|--|--|---|--|---|--| | Unit Name | Unit 1: Introduction to Classification and Evolution | Unit 2: Invertebrates Part 1: Porifera, Cnidaria, Platyhelminthes, Nematoda, Annelida, and Mollusca | Unit 3: Midterm | Unit 4: Invertebrates Part 2: Arthropoda and Echinodermata | Unit 5:
Vertebrates:
Chordata | Unit 6: Human Impact and Invasive Species | | | Time Frame | 8 weeks | 8 weeks | 2 weeks | 6.5 weeks | 8.5 weeks | 3 weeks | | | Standards | SZ1a: Construct an explanation of the relationships among animal taxa using evidence from morphology, embryology, and biochemistry. SZ1c: Develop a model using data to place taxa in a phylogenetic context to support hypotheses of relationships SZ2a: Construct an explanation of the geological history of earth and the effects of major environmental changes SZ2b: Construct an explanation of how evolution allows species to adapt to environmental changes. | SZ1b: Analyze and interpret data to explain patterns in structure and function and construct a classification of representative animal taxa SZ3a: Plan and carry out investigations to determine patterns in morphology SZ3b: Construct an explanation of life functions at appropriate level of organization for representative taxa SZ3c: Construct an explanation based on evidence to relate important structural changes across evolutionary history to key functional transitions. SZ4a: Construct explanations to relate structure and function of animals to ecological roles, including morphological, physiological, and behavioral adaptations SZ4b: Develop a model to explain patterns in various life cycles found among animals | SZ1a: Construct an explanation of the relationships among animal taxa using evidence from morphology, embryology, and biochemistry. SZ1c: Develop a model using data to place taxa in a phylogenetic context to support hypotheses of relationships SZ4a: Construct explanations to relate structure and function of animals to ecological roles, including morphological, and behavioral adaptations SZ5a: Ask questions and define problems identifying the cause and effect of human activities on the biodiversity of organisms | SZ1b: Analyze and interpret data to explain patterns in structure and function and construct a classification of representative animal taxa SZ3a: Plan and carry out investigations to determine patterns in morphology SZ3b: Construct an explanation of life functions at appropriate level of organization for representative taxa. SZ3c: Construct an explanation based on evidence to relate important structural changes across evolutionary history to key functional transitions. SZ4a: Construct explanations to relate structure and function of animals to ecological roles, including morphological, physiological, and behavioral adaptations SZ4b: Develop a model to explain patterns in various life cycles found among animals | SZ1b: Analyze and interpret data to explain patterns in structure and function and construct a classification of representative animal taxa SZ3a: Plan and carry out investigations to determine patterns in morphology SZ3b: Construct an explanation of life functions at appropriate level of organization for representative taxa SZ3c: Construct an explanation based on evidence to relate important structural changes across evolutionary history to key functional transitions. SZ4a: Construct explanations to relate structure and function of animals to ecological roles, including morphological, physiological, and | SZ5a: Ask questions and define problems identifying the cause and effect of human activities on the biodiversity of organisms SZ5b: Design a solution to preserve species diversity in natural and captive environments with regard to conservation, habitat restoration, breeding programs and management of genetic diversity at local and global levels. SZ5c: Construct an argument based on evidence of the short-term and long-term impacts of legal, societal, political, ethical, and economic decisions on animal diversity. | | Published August, 2023 MCS Science Resources | | | | | | behavioral adaptations SZ4b: Develop a model to explain patterns in various life cycles found among animals SZ4c: Construct an explanation based on evidence of the effects of symbiotic relationships between animals and between animals and other organisms | | |-----------------------|---------------------------------|--|-----------------------|---------------------|--|--| | Content | Statement of | Statement of Inquiry | - | - | Statement of | Statement of Inquiry | | Specific | Inquiry | Animal form and function within inverteb | | across key taxa | Inquiry | How does human | | Information | The geological history of Earth | influence how animals interact with their environment. | | | Animal diversity is influenced by | activity impact the biodiversity of life on | | (texts,
documents, | has influenced | Phenomenon: Animal variety in form and function is still a field of discovery. | | | human activities. | earth? | | methods) | the form and | riterionie Alimiai variety in form and function is still a field of discovery. | | | Traman activities. | Curtin | | , | function of | Crosscutting Concepts | | | Phenomenon: | Phenomenon: | | | organisms | Systems and Systems Model | | | Humans share | Humans transport | | | through geologic | Stability and Change | | | many structures | invasive species | | | time. | Scale, Proportion, and Quantity | | | with other | that impact local | | | | Cause and Effect | | | vertebrate | species | | | Phenomenon: | Patterns | | | classes | | | | Fossils from the | CORE IDEAS | | | | Crosscutting | | | Cambrian have representatives | CORE IDEAS | | | Crosscutting Concepts | ConceptsSystems and | | | of almost all | Distinguishing characteristics of animal groups with emphasis on evolution of transitional body structures and comparison of body systems as well as human and | | | • Systems and | Systems Model | | | animal groups | animal interactions, | on or body systems as | s well as Human and | Systems | Stability and | | | identified today. | | | | Model | Change | | | , | | | | Stability and | Cause and Effect | | | Crosscutting | | | | Change | Patterns | | | Concepts | | | | • Scale, | | | | Stability and | | | | Proportion, | | | | Change | | | | and Quantity | CORE IDEAS | | | • Scale, | | | | • Cause and | Research and discuss | | | Proportion, | | | | Effect | the economic and | Published August, 2023 <u>MCS Science Resources</u> | | and Quantity | | | | Patterns | ecological role of | |--------------------------------|----------------------------|---------------------------------------|-----------|---------------------|-----------------------------|------------------------| | | Structure & | | | | | invasive species in an | | | Function | | | | | environment | | | • Cause & | | | | CORE IDEAS | | | | Effect | | | | Distinguishing | | | | Patterns | | | | characteristics of | | | | | | | | animal groups | | | | CORE IDEAS | | | | with emphasis on | | | | Characteristics of | | | | evolution of | | | | Animals; | | | | transitional body | | | | Classification and | | | | structures and | | | | Taxonomy; Earth | | | | comparison of | | | | History; Evolution | | | | body systems as | | | | | | | | well as human
and animal | | | | | | | | interactions, | | | | CFA X 2 | CSA X 2 | Midterm | CSA X 1 | CSA | Final project (2 | | | CSA CSA | CFA X 3 | | CFA X 2 | CFA X 2 | _ , | | | CSA | CFA X 3 | practical | CFA X Z | CFA X Z | parts) | | | Geological | Sponge Investigation | | Grasshopper | Dissections | Final exam | | | History mini | | | Dissection | Skeletal | presentation | | | project | Planaria Investigative lab | | | comparisons | | | | 1 3 | | | Modeling an | 1 | | | | Evidence of | Earthworm Dissection | | arthropod activity | Skin, scales vs | | | Common | evolution | | | | fur comparison | | | Assessments/
Major Projects | activity | Worm speed dating activity | | Animal behavior | lab | | | | | The special annual grant and a second | | introduction lab #3 | (microscope | | | | Classification/ | Animal behavior introduction lab | | | lab) | | | | cladogram | #2 | | Cladogram | 140) | | | | activity | 72 | | characteristics | Symbiotic | | | | activity | Mollusk dissection | | project | relationships | | | | Animal | Wioliusk dissection | | (summative) | activity | | | | behavior | Hydra lab (if time permits) | | (Summative) | activity | | | | introduction | 11yara iao (ii time perimis) | | Echinoderm | | | | | | | | | | | | | lab #1 | | | dissection | | | Published August, 2023 <u>MCS Science Resources</u> | Level Specific
Differentiation | Introduction to dissection lab • SWD/504 – Accommodations Provided as appropriate for student • ELL – Reading & Vocabulary Support • Intervention Support – Some options for alternative assignments as well as test remediation • Extensions – Enrichment Tasks and Projects can include Case Studies, Data Nuggets, project choice, additional dissection opportunities | SWD/504 – Accommodations Provided as appropriate for student ELL – Reading & Vocabulary Support Scaffolded project template Presentation can be video, whole class, small group or individual | |-----------------------------------|--|---| | Resources | marietta.schoology.com www.ck12.org Miller and Levine Biology Textbook 2009, (Dragonfly book) workbook, text, and test bank Holt Biology Interactive Reader study guide Pearson online Biology Textbook Argument Driven Inquiry NSTA activity book Shape of Life website videos and activities Youtube videos of Dissections of specific animals Bilogyjunction.com; Biologycorner.com; Ms Maria Knowles course sites (dissection resources) Eyewitness videos Preserved specimens slides for observation and dissection BBC nature documentaries | | Published August, 2023 <u>MCS Science Resources</u>